Abstract No. 715

Receptor Tyrosine Kinase Activity and Apoptosis in Gastrointestinal Stromal Tumors: a Pharmacodynamic Analysis of Response to Sunitinib Malate (SU11248)

Therapy

D Davis, D McConkey, J Heymach, J Desai, S George, J Jackson, C Bello, C Baum, D Shalinsky, G Demetri

Disclosure

This work was supported by:
 Pfizer Global Research and Development

Introduction

- Most gastrointestinal stromal tumors (GIST) contain activating mutations in the *c-kit* gene
 - KIT is a key receptor tyrosine kinase (RTK) in GIST progression
- Imatinib mesylate, a potent inhibitor of KIT RTK activity, is currently first-line treatment for unresectable or metastatic GIST
- However, treatment effectiveness is hampered by imatinib resistance, with early resistance being noted in approximately 14% of GIST patients¹

SU11248: Multitargeted Receptor Tyrosine Kinase Inhibitor

Split Kinase Domain RTKs

VEGFR-1 PDGFR-α VEGFR-2 PDGFR-β VEGFR-3 CSF1R Fms KIT FLT-3

Enzymatic K_i (µM)

PDGFR-β	VEGFR-2	VEGFR-3	FGFR-1	EGFR
0.008	0.009	0.017	0.83	>10

*Cellular IC₅₀ (µM)

PDGFR-β	VEGFR-2	KIT	FLT-3 (WT)	// EGFR	MET
0.008	0.009	0.01	0.25	8.9	12.0

*Receptor phosphorylation

Hypothesis: SU11248 Inhibits RTKs on Tumor Cells, Pericytes and Endothelial Cells to Produce its Anti-cancer Efficacy

Anti-angiogenic effects Anti-tumor effects

Pericyte, Endothelial Cell, Stromal and Tumor Cell RTKs ⇒

Phase I/II Trial of SU11248 in Imatinib-resistant GIST

Baseline (97 total) & post-treatment biopsies (20 patients)

pPDGFRs/PDGFRs pKIT/KIT pVEGFRs/VEGFRs

Tumor Effects
Endothelial Cell Death
Microvessel Density

VEGF sVEGFR-2 sKIT Circulating ECs monocytes

SU11248 Control of Imatinib-resistant GIST in a Patient with Primary Resistance to Imatinib Baseline Day 7 PET

CT after 2 months of SU11248

Demetri GD, et al. Proc Am Soc Clin Oncol 2005

Quantitative Analysis of RTK Activity and Apoptosis in Tumors¹

Pathological

Laser-mediated scan of immunofluourescent biomarkers

verification of tumor **LSC-generated** histogram brings alred FL **LSC-mediated** tumor tissue LSC-generated mapping scattergram displays cell populations

LSC = laser scanning cytometry

LSC-mediated Analysis of Biomarkers in Clinical Studies of RTK Inhibitors

Agent	Diagnosis	Key biomarkers	Reference
SU5416	Sarcoma	Apoptosis <5%, 20% p-KDR inhibition in 1 case	Heymach JV <i>Clin Cancer Res.</i> 2004 Sep
SU6668	Colon/ Liver Met.	Apoptosis <5%, 50% p-KDR and p-PDGFR inhibition in 2 cases	Davis DW <i>Clin Cancer Res.</i> 2005 Jan

VEGFR-2 Phosphorylation

PDGFR Phosphorylation

LSC = laser scanning cytometry

Does SU11248 Target only KIT or Multiple RTKs in GIST?

To answer, assess effects of SU11248 on the activity of:

PDGFR-β

VEGFR-2

KIT

Phosphorylated-PDGFR-β Levels Increased in Patients Progressing on SU11248¹

(Scale x20)

Phosphorylated PDGFR-β Decreased in Responding Patients¹

Quantitative Analysis of p-PDGFR-β and p-VEGFR-2 Expression (% Change)

PD = progressive disease; SD = stable disease; PR = partial response

Change in p-PDGFR-β and p-VEGFR-2 Activity: Correlation with Clinical Benefit

Clinical outcome	Number of patients	Δ p-PDGFR-β activity	△ p-VEGFR-2 activity
Clinical benefit	8	18.2% ↓	26.67% ↓
(PR or SD >6 months)		p=0.006	p=0.02
Progressive	12	9.9% ↑	9.62% ↑
disease (<6 months)		p=0.06	p=0.22

Was Inhibition in p-PDGFR-β and p-VEGFR-2 Sufficient to Induce Apoptosis?

SU11248 Increased Apoptosis in Patients with Clinical Benefit¹

¹After 11 days of therapy (Scale: x20)

Effects of SU11248 on Endothelial and Tumor Cell Apoptosis

Clinical outcome	EC apoptosis (fold change) ¹	TC apoptosis (fold change) ¹
Clinical benefit	9.55 (p=0.017)	5.80 (p=0.002)
Progressive disease	1.78 (p=0.289)	1.15 (p=0.406)

 Patients with CB displayed significantly higher levels of EC (p=0.007) and TC (p=0.006) apoptosis than patients with PD

¹Compared to baseline EC = endothelial cell; TC = tumor cell

Summary

- PDGFR-β and p-VEGFR-2 phosphorylation decreased in tumors in patients with CB from SU11248
- EC and TC apoptosis increased during SU11248 treatment to a greater extent in the CB group than the PD group
- Suppression of PDGFR-β and VEGFR-2 activity implicates
 RTKs in addition to KIT as targets for SU11248 in GIST
- We hypothesize that the multi-targeted nature of SU11248 inhibits RTKs on tumor and vascular cells producing anticancer efficacy

Acknowledgments

Dana Farber Cancer Institute

George Demetri Suzanne George Jesse Jackson Jayesh Desai

MD Anderson Cancer Center

David J McConkey John Heymach

Pfizer, La Jolla

Ann-Marie Martino Samuel DePrimo David Shalinsky Charles Baum

SUGEN Inc

Bill Manning
Julie Cherrington

